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Abstract
Predictive Knowledge (PK) is a group of approaches to ma-
chine perception and knowledgability using large collections
of predictions made online in real-time through interaction
with the environment. Determining how well a collection of
predictions captures the relevant dynamics of the environ-
ment remains an open challenge. In this paper, we introduce
specifications for sensorimotor baselines and robustness-to-
transfer metrics for evaluation of PK. We illustrate the use of
these metrics by comparing variant architectures of General
Value Function (GVF) networks.

Predictive Knowledge
A key challenge for machine intelligence is that of represen-
tation: a system’s performance is tied to its ability to per-
ceive and represent its environment. Predictive knowledge
representations use large collections of predictions to model
the environment. An agent continually anticipates its sensa-
tion from its environment by making many predictions about
the dynamics of its environment with respect to its behaviour
(Modayil, White, and Sutton 2014). These predictions about
expected sensation can then be used to inform an agent’s
internal representation of its environment (Littman and Sut-
ton 2002). Other proposals describe inter-relations of pre-
dictions, similar to TD Networks (Tanner and Sutton 2005;
Makino and Takagi 2008) to enable abstract, conceptual rep-
resentations by making predictions of predictions (Schapire
and Rivest 1988).

In this paper we discuss the subtleties of evaluation pre-
dictive representation and propose two complimentary tech-
niques. We specifically consider PK methods that 1) are able
to expand their representations by proposing new predic-
tions, 2) are able to self-verify their predictions through in-
teraction with their environment, and 3) are able continually
learn their predictions on-line.

To examine these evaluation metrics we use the General
Value Function framework for predictive representations
(White 2015). GVFs estimate the expected discounted return
of a signal C defined as Gt =

∑∞
k=0(

∏k
j=1(γt+j))Ct+k+1.

Value is estimated with respect to a specific policy π,
discount function γ, and cumulant c: v(s;π, γ, c) =
Eπ[Gt|St = s].

The parameters c, π, and γ are the question parameters
which specify what a GVF is about; the answer param-
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Figure 1: Many of the decisions which specify a PK architecture.

eters—such as the step size α and eligibility decay λ—
describe how a learning method learns to answer the GVF
question. GVFs can be learnt online, incrementally through
methods such as Temporal-difference (TD) learning (Sutton
1988). The representational power of a given GVF network
depends not just on the quality of the answers, but also in
the architecture of the network, as illustrated in Figure 1.

PK systems have been shown to be a scalable way to
update and verify an agent’s representation of the world,
with examples of real-world robotic prediction tasks mak-
ing thousands or tens of thousands of predictions in real-time
on consumer-grade devices (Sutton et al. 2011; White 2015;
Pilarski and Sherstan 2016).

Evaluating PK Architectures
Existing evaluation metrics for PK fall into two categories:
1) reporting the average error over all predictions within the
PK system and 2) reporting errors on a known, challeng-
ing subset of the predictions within the system. Reporting
the average error penalizes the accuracy of every prediction
equally, when some predictions may have high error (such
as for inherently random signals) but still provide represen-
tational power. Conversely, a representation that makes irrel-
evant but constant predictions will perform well according to
average error, while providing no useful signals. Reporting
errors on a subset of predictions requires identification of
said subset across all architectures and lends itself to over-
fitting for those particular questions. It is difficult to iden-



tify predictions of interest without biasing towards particular
architectures or network structures. Identifying predictions
that require more complex representations in real-world set-
tings requires extensive domain knowledge. In addition, it
forces the inclusion of those pre-defined predictions when a
goal of PK is to independently construct a useful representa-
tion. Neither of these are entirely satisfactory proxies for the
real question: What is the representational power of a given
PK system?

As a result of this evaluation bottleneck, examples of PK
on real-world problems are largely proof-of-concept appli-
cations which serve to highlight the type, quantity, and di-
versity of predictions which can be made (Pilarski and Sher-
stan 2016; Modayil, White, and Sutton 2014; Sutton et al.
2011). Where evaluation exists, it focuses on prediction er-
ror as a means of evaluating the quality of a collection of pre-
dictions. This is insufficient, as the reliability of predictions
does not necessarily equate to the quality of a learned rep-
resentation. While low prediction error describes the quality
of a single predictor, low average prediction error is not nec-
essarily indicative of the best collection of predictions for
constructing representations of the environment.

For example, one could maintain a diverse collection of
GVFs for different time-scales γ and policies π that exclu-
sively anticipate the voltage of servos on a robotic limb—a
signal that is often constant. These trite predictions would
likely have a lower error than a collection of predictions
which represent the environment more completely. More-
over, comparing the average error between two collections
of predictions with different question parameters is inap-
propriate, as the errors are with respect to different signals.
When we compare the average error of different sets of pre-
dictions in PK architectures, we are unable to meaningfully
quantify how changes in the architectural proposal impact
the knowledgability of a system.

We propose sensorimotor predictions as a baseline which
balances our ability to meaningfully assess the representa-
tional capacity of a collection of predictions in a meaningful
way, while being general enough to be extensible to real-
world prediction problems.

Evaluation by Sensorimotor Baselines
A scalable alternative to comparison by hand-crafted pre-
dictions is to maintain a collection of baseline sensorimotor
predictions common between each architecture being eval-
uated. Instead of hand-crafting predictions based on the id-
iosyncrasies of a particular domain, a sensorimotor baseline
uses the observations from the environment as prediction tar-
gets. The identification of good features is integral to being
able to make reliable predictions; in evaluating the ability of
a system to predict its raw stimuli, we are in fact evaluating
the ability of the system to perform representation learning
for the simplest predictions we could want to make.

By comparing architectures based on how well they can
represent their stimuli, we are prioritizing architectures that
are able to find better representations for learning low-level
sensory input, rather than better representations of the envi-
ronment in general. While a limitation, it is a natural ap-
proach to evaluation: approaches to PK have been moti-

Figure 2: The data source for the experiments in this work: The
Bento Arm, controlled by a human participant, generating a stream
of multimodal sensory data from participants’ interactions with a
modified Box and Blocks task.

vated by being able to anticipate their environment (Mo-
dayil, White, and Sutton 2014), and low-level anticipatory
predictions are useful as inputs in applications of PK (Sher-
stan, Modayil, and Pilarski 2015).

Sensorimotor baselines are a balance between the two
aforementioned methods of evlauation: Baseline predictions
enable us to assess the representation generated by our PK
system with no designer intervention, making them a gen-
eral scalable alternative for evaluation of real-world systems.
By assessing representation quality, we can begin to pre-
cisely quantify the impact of different construction methods
in real-world domains. Using sensorimotor baselines is a fair
first step in bridging the evaluation gap between toy domains
and real-world problems.

Evaluation by Transfer
Perhaps one of the most natural qualities of an effective PK
system is generality. PK systems are intended for use in
life-long, continual learning methods—methods that are ex-
pected to learn for the duration of their deployment. In such
a setting it is imperative that the predictions being made are
resilient to changes in their environment. A method of eval-
uating the ability of a continual learning system to produce
general representations is through transfer-learning (Taylor
and Stone 2009). We can evaluate the generality of PK by
constructing GVFs in one setting and testing their general-
ity on experience in a transfer environment that shares some
traits with the source setting. An architecture that is able to
propose and interrelate GVFs such that they are more robust
to such transfers is an architecture that produces more gen-
eral representations.

Experiment: Prosthetic Prediction Task
We explore sensorimotor baselines and transfer using data
from a human control task on the Bento Arm (Dawson et
al. 2014), an open-source robot arm intended for use as a
research prosthesis. Human control of a robotic prosthesis
is an area with active interest in PK (Pilarski and Sherstan
2016), and GVFs have been previously used to improve the
control in this domain (Pilarski et al. 2013).

Data for this experiment was sourced from the previous
experiments of (Edwards et al. 2016). Four users performed
a common manipulation challenge where they used the robot
arm to move objects over a barrier (Figure 2). Each user
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